S1 File. Model equations.

An R package for simulating growth and organic wastage in aquaculture farms in response to environmental conditions and husbandry practices

Damiano Baldan¹, Erika Maria Diletta Porporato², Roberto Pastres^{1,2}, Daniele Brigolin^{1,2*}

¹Bluefarm S.r.l., Venezia Marghera, Italy

²Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Venezia Mestre, Italy.

E-mail: brigo@unive.it (DBr)

^{*} Corresponding author

Table A. Model state variables, forcings, and functional relationships of *Mytilus* galloprovincialis – as in Brigolin et al. (2009)

Prognostic state variables

 W_b : somatic dry weight [g] R: gonadic dry weight [g]

Diagnostic state variables

 W_d : dry weight of the mussel [g] W_f : wet weight of the mussel [g]

 W_{tot} : total weight of the mussel, including the shell [g]

L: length of the shell [cm]

1. Growth equations

$$\frac{dW_b}{dt} = (1 - k) \cdot \frac{(A - C)}{\varepsilon_B} \tag{1}$$

$$\frac{dR}{dt} = k \cdot \frac{(A-C)}{\varepsilon_R} \tag{2}$$

2. Computation of the available energy

$$Cp = chl2cp \cdot CHL \tag{3}$$

$$PHY = \frac{Cp}{\gamma} \tag{4}$$

$$DT = POC - Cp (5)$$

Forcings

 T_w : water temperature [°C]

POC: Particulate Organic Carbon

concentration [mgC l⁻¹]

CHL: Chlorophyll-a concentration [mg l⁻¹] *PHY*: Phytoplankton concentration [mg l⁻¹]

Cp: Phytoplankton-C concentration [mgC l⁻¹]

TSM: Total Suspended Matter concentration [mg l⁻¹]

POM: Particulate Organic Matter concentration [mg l⁻¹]

DT: Organic detritus concentration [mg 1⁻¹]

3. Functional expressions for net anabolism

$$f_{a} = \left(\frac{T_{ma} - T_{w}}{T_{ma} - T_{oa}}\right)^{\beta_{a} \cdot (T_{ma} - T_{oa})} \cdot e^{\beta_{a} \cdot (T_{w} - T_{oa})}$$
(6)

$$I = CR_{\max} \cdot f_a \cdot W_b^q \cdot \left(\varepsilon_{DT} \cdot DT + \varepsilon_{Phy} \cdot PHY \right) \tag{7}$$

$$Q = \frac{POM}{TSM} \tag{8}$$

$$AE = AE_{\text{max}} \cdot \frac{Q}{Q + K_{a}} \tag{9}$$

$$E = AE \cdot I \tag{10}$$

$$A = (1 - \alpha) \cdot E \tag{11}$$

Parameters

chl2cp: Conversion factor from CHL to Cp

γ: Conversion factor from Cp to Phy [-]

 AE_{max} : Maximum Adsorption Efficiency [-]

 K_s : Half-saturation constant for the AE [-]

 T_{ma} : Maximum temperature for the anabolic processes [°C]

 T_{oa} : Optimal temperature for the anabolic processes [°C]

 β_a : Temperature exponent for the anabolism [1/°C]

 Cr_{max} : Maximum Filtration rate

 $[1/(day \cdot gDW)]$

4. Functional expressions for fasting catabolism

$$f_c = \left(\frac{T_{mc} - T_w}{T_{mc} - T_{oc}}\right)^{\beta_c \cdot (T_{mc} - T_{oc})} \cdot e^{\beta_c \cdot (T_w - T_{oc})}$$
(12)

$$C = R_{\text{max}} \cdot f_c \cdot \varepsilon_{O_2} \cdot W_b \tag{13}$$

5. Reproduction events

$$R(t = spawn_1) = R(t = spawn_2) = 0 \tag{14}$$

6. System output

$$W_d = W_b + R \tag{15}$$

$$W_f = a_f \cdot W_d \tag{16}$$

$$W_{tot} = a_{tot} \cdot W_d \tag{17}$$

q: Weight exponent for filtration [-] ε_{DT} : Energy content of detritus [J/mg] ε_{PHY} : Energy content of phytoplankton [J/mg] α : Feeding catabolism [-] A_{max} : Maximum energy ingestion rate for a 1 g mussel $[J/(g \cdot day)]$ T_{mc} : Maximum temperature for the catabolic processes [°C] T_{oc} : Optimal temperature for the catabolic processes [°C] β_c : Temperature exponent for the catabolism [1/°C] R_{max} : Maximum respiration rate $[mgO2/(gDW \cdot day)]$ ε_{O2} : Energy consumed by the respiration of 1g of oxygen [J/mgO2] k: Energy fraction invested in reproduction [- ε_B : Somatic tissue energy content [J/g] ε_R : Gonadic tissue energy content [J/g] a_f : Dry weight-wet weight conversion coefficient [-] *a*_{tot}: Dry weight-total (including shell) weight conversion coefficient [-] a_L : Weight-length conversion coefficient [mm/mg^{bL}] b_L : Shape-coefficient for the weight-length conversion [-]

 $L = a_L \cdot W_d^{b_L} \tag{18}$

Table B. Functional expressions used in the individual growth models of *Sparus aurata* and *Dicentrarchus labrax* – as in Brigolin et al. (2010; 2014)

State variable:

w: fresh weight [g]

Growth equation:

$$\frac{dw}{dt} = \left(\frac{A - C}{\varepsilon_T}\right);$$

A: net anabolism [J day⁻¹]

C: fasting catabolism [J day⁻¹]

 $\epsilon_{\text{T}}\!\!:\!$ energy content of somatic tissue [kJ g-1]

Forcings:

 T_w : water temperature [°C]

R: amount of food provided by the farmer per individual [g day⁻¹]

 C_P : % of proteins in the ingested food

 C_C : % of carbohydrates in the ingested food

 C_L : % of lipids in the ingested food

Functional expressions for net anabolism

$$I = I_{max} \cdot H(Tw) \cdot w^m$$

I: daily ingestion rate [g day⁻¹]

 I_{max} : maximum ingestion rate [g day⁻¹ g^{-m}]

m: weight exponent for the anabolism

F: faeces production [g day⁻¹]

$$\begin{cases} I = R & \text{, when } I \ge R \\ I = 0 & \text{, when } T < T_a \end{cases}$$

$$A = (1 - \alpha) \cdot I \cdot [C_P \cdot \varepsilon_P \cdot \beta_P + C_C \cdot \varepsilon_C \cdot \beta_C + C_L \cdot \varepsilon_L \cdot \beta_L]$$

$$F = I \cdot [C_P \cdot (1 - \beta_P) + C_C \cdot (1 - \beta_C) + C_L \cdot (1 - \beta_L)]$$

α: feeding catabolism coefficient

 β_P , β_C , β_L : assimilation coefficient for protein, carbohydrate and lipid

 ε_{P} , ε_{C} , ε_{L} : energy content of protein, carbohydrate and lipid [kJ g⁻¹]

2. Functional expressions for fasting catabolism

$$C = \varepsilon_{O2} \cdot k_0 \cdot K(T_w) \cdot w^n$$

 ε_{O2} : energy consumed by the respiration of 1 g of oxygen [kJ g⁻¹]

 k_0 : fasting catabolism at 0°C [day⁻¹ g⁻ⁿ]

n: weight exponent for the catabolism

$$H(T_w) = \left(\frac{T_m - T_w}{T_m - T_o}\right)^{b(T_m - T_o)} \cdot e^{b(T_w - T_o)}$$

b: shape coefficient for the $H(T_w)$ function

 T_o : optimal temperature [°C]

 T_m : maximum lethal temperature [°C]

$$K(T_w) = e^{pk \cdot T_w}$$

pk: temperature coefficient for the fasting catabolism [°C⁻¹]

O: daily respiration rate [day⁻¹]

 $Ex_{P,N}$: daily dissolved N,P excretion rates [day⁻¹]

$$O = k_0 \cdot K(T_w) \cdot w^n$$

$$Ex_N = O \cdot k_{N:O}$$

$$Ex_P = O \cdot k_{P:O}$$

3. Wasted feed (W)

W: uneaten feed [g day⁻¹]

 $\begin{cases} W = R - I & \text{, when } R \ge I \\ W = 0 & \text{, when } R < I \end{cases}$

Table C. Model state variables, forcings, and functional relationships of *Ruditapes*philippinarum - as in Solidoro et al. (2000)

 Ww: wet weight [g] Wd: dry weight [g] L: length of the shell [mm] b: coeff. of allometric equation relating wd to ww a: coeff. of allometric equation relating ww to L 	Isometric relation $W = aL^{3}$ Allometric relation $w_{d} = bw_{w}^{p}$
T: water temperature [°C] F: Food concentration in water [µg chl-a l ⁻³]	Growth equations if $E > E^*$, which is equivalent to $F > F^*$
G_{wmax} : Max. growth rate on a wet weight basis $[gww^{1/3} day^{-1}]$	$\frac{dL}{dt} = G_{L_{\text{max}}} f_{gT}(T) f_{gF}(F) - r_{L_{\text{max}}} f_{rT}(T) L$
r_{wmax} : Max. respiration rate on a wet weight basis $[day^{-1}]$	$\frac{dw_{w}}{dt} = G_{w \max} f_{gT}(T) w_{w}^{2/3} - r_{w \max} f_{rT}(T) w_{w}$

G_{dmax}: Max. growth rate on a dry weight basis [gdw^{0.265} day⁻¹]

r_{dmax}: Max. respiration rate on a length basis [day⁻¹] G_{Lmax}: Max. growth rate on a length basis [mm day⁻¹]

 r_{Lmax} : Max. respiration rate on a length basis [day⁻¹]

p: Coeff. of allometric growth equation relating w_d to $\mathbf{w}_{\mathbf{w}}[-]$

q: Coeff. of allometric filter velocity [-]

T_{mG}: Max. temperature for growth [°C]

T_{oG}: Optimal temperature for growth [°C]

T_{mr}: Max. temperature for respiration [°C]

T_{ov}: Optimal temperature for filtration [°C]

 $\varepsilon_{\rm F}$: Energetic content food [J μ g chl-a⁻¹]

 ε_T : Energetic content of

Ruditapes philippinarum [J g dw⁻¹]

$$\frac{dw_d}{dt} = G_{d \max} f_{gT}(T) w_d^{(1-1/3p)} - r_{d \max} f_{rT}(T) w_d$$

if $E \le E^*$, which is equivalent to $F \le F^*$

$$\frac{dL}{dt} = \frac{F}{F *} G_{L \max} f_{gT}(T) f_{gF}(F) - r_{L \max} f_{rT}(T) L$$

$$\frac{dw_{w}}{dt} = \frac{F}{F^{*}} G_{w \max} f_{gT}(T) w_{w}^{2/3} - r_{w \max} f_{rT}(T) w_{w}$$

$$\frac{dw_d}{dt} = G_{d \max} f_{gT}(T) w_d^{(1-1/3p)} - r_{d \max} f_{rT}(T) w_d$$

$$= FV_f f_v(T) w_d^q \frac{\varepsilon_F}{\varepsilon_T} - r_{d \max} f_{rT}(T) w_d$$

$$G_{d \max} = pG_{w\max}b^{(1/3p)} = pG_{r\max}3a^{1/3}b^{(1/3p)}$$

$$r_{d \max} = pr_{w\max} = 3rp_{r\max}$$

Threshold below which growth is food

$$F^* = \frac{G_{d \max} f_{gT}(T) w_d^{(1-1/3p)} \varepsilon_T}{V_f f_v(T) w_d^q \varepsilon_F}$$

Functional response of temperature for growth, respiration and filtration

$$f_{gT}(T) = \left(\frac{T_{mG} - T}{T_{mG} - T_{oG}}\right)^{\beta_G(T_{mG} - T_{oG})} e^{\beta_G(T - T_{oG})}$$

$$f_{tT}(T) = \left(\frac{T_{mr} - T}{T_{mr} - T_{or}}\right)^{\beta_r(T_{mr} - T_{or})} e^{\beta_r(T - T_{or})}$$

$$f_v(T) = \left(\frac{T_{mv} - T}{T_{mv} - T_{ov}}\right)^{\beta_v(T_{mv} - T_{ov})} e^{\beta_v(T - T_{ov})}$$

$$f_{tT}(T) = \left(\frac{T_{mr} - T}{T_{mr} - T_{or}}\right)^{\beta_r(T_{mr} - T_{or})} e^{\beta_r(T - T_{or})}$$

$$f_{v}(T) = \left(\frac{T_{mv} - T}{T_{mv} - T_{ov}}\right)^{\beta_{v}(T_{mv} - T_{ov})} e^{\beta_{v}(T - T_{ov})}$$